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Brain	tumors	are	evaluated,	characterized,	and	monitored	using	diagnostic	
imaging.	 However,	 because	 these	 tumors	 are	 so	 diverse,	 there	 are	 still	
several	 difficulties	 in	 each	 group.	 This	 might	 involve	 differences	 in	 the	
biology	 of	 the	 cancer	 that	 are	 linked	 to	 varying	 intensities	 of	 cellular	
invasion,	 proliferation,	 and	 necrosis,	 all	 of	 which	 have	 distinct	 imaging	
appearances.	 Due	 to	 these	 changes,	 tumor	 evaluation,	 including	
segmentation,	surveillance,	and	molecular	characterizations,	has	become	
more	complex.	Even	though	various	rule-based	techniques	have	been	put	
into	 practice	 to	 relate	 to	 tumor	 appearance	 and	 size,	 these	 techniques	
naturally	reduce	the	vast	quantity	of	tumor	imaging	data	to	a	small	number	
of	 variables.	 Due	 to	 their	 efficacy	 in	 resolving	 image-based	 problems,	
approaches	in	artificial	intelligence,	machine	learning,	and	deep	learning	
have	found	increased	use	in	computer	vision	tasks,	such	as	tumor	imaging.	
This	section	aims	to	provide	an	overview	of	some	of	these	developments	
in	tumor	imaging.	
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INTRODUCTION	

With	the	recent	advent	of	artificial	intelligence	in	
neuroimaging,	 there	 is	 a	 lot	 of	 interest	 in	
utilizing	the	 potential	 of	 novel,	 intrinsically	
quantitative	 computational	 techniques	 to	
measure	 and	 categorize	brain	 tumor	features	 on	
standard	 and	 sophisticated	 magnetic	 resonance	
imaging	 (MRIs)	 in	 a	 non-invasive	 manner.	
Machine	learning	(ML)	and	deep	learning	(DL)	are	
two	 forms	of	artificial	 intelligence	(AI)	 that	have	
the	potential	to	automatically	identify	patterns	in	
images	that	are	invisible	to	a	neuroimager	and	to	
outperform	 human	 performance	 in	 terms	 of	
glioma	 genetics	 prediction,	 treatment	 response	
prediction,	and	long-term	outcome	prediction.		
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In	 theory,	 these	 AI	 characteristics	 could	 help	
doctors	treat	patients	more	quickly	and	precisely,	
giving	 them	more	 value	 overall.	 This	 article	will	
assess	 the	 current	 state	 of	 brain	 tumor	imaging,	
outline	 possible	 uses	 for	 AI,	 and	 provide	 a	 brief	
overview	 of	 the	 epidemiology	 of	 primary	 brain	
tumors,	focusing	on	gliomas	[1].	

	Artificial	intelligence	(AI)	

Artificial	 intelligence	 (AI)	 is	 the	 computational	
capacity	 to	 carry	 out	 tasks	 comparable	 to	 those	
carried	 out	 by	 people	 to	 maximize	the	 use	 of	
distinctive	inputs	and	produce	outputs	with	a	high	
added	value.	Medical	 imaging	 is	one	of	 the	most	
exciting	uses	of	AI	at	the	moment.	Radiologists	can	
benefit	from	using	computers	when	doing	routine	
detection	 and	 diagnosis	 duties.	 To	 help	
radiologists	identify	and	analyze	possible	lesions,	
which	 in	 turn	 allows	 differentiating	 between	
lesions,	 decreasing	 errors,	 and	 boosting	
radiological	 efficiency,	 the	 goal	 of	 promoting	
Computer-Aided	Diagnostic	(CAD)	systems	using	
state-of-the-art	AI	techniques	was	established.	As	
a	result,	continuous	and	incremental	efforts	have	

been	 to	 enhance	 AI's	 diagnostic	 efficiency	 to	 be	
promoted	 for	 everyday	 clinical	 practice.	 The	
creation	of	artificial	neural	networks	(ANN)	in	the	
middle	of	 the	past	 century	and	 their	 subsequent	
evolution,	 which	 introduced	 the	 principles	 of	
computational	 learning	 models,	 ML,	 and	 DL,	 is	
substantially	responsible	for	the	progress	of	AI	[2].	

Machine	learning	(ML)	

Applications	 of	 ML	 demand	 a	 collection	 of	
problematic	 data	 as	 input	 that	 the	machine	will	
utilize	 for	 self-training,	 and	 such	 data	 should	
always	generate	the	desired	output	to	be	expected.	
There	 are	 two	 types	 of	 machine	 learning	 (ML):	
supervised	 and	 unsupervised.	 Supervised	 ML	
depends	 on	 whether	 the	 input	 was	 labeled	
previously	by	human	experts	 or	 if	 the	 computer	
performed	 direct	 data	 extraction	 using	 various	
computational	 methods.	 The	 optimal	 ML	 model	
must	 include	 the	most	 important	 features	 to	 the	
outcome	 (local	 features)	 and	 the	 most	 generic	
ones	 (global	 features)	 with	 the	 ability	 to	
generalize	for	new	unseen	inputs.	

 
Figure	1	Select	artificial	intelligence	(AI)	concept	map	
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Deep	learning	(DL)	

Deep	 learning	 (DL)	 enables	 automatic	
dimensionality	 reduction	 and	 more	 intricate	
classification	 procedures	 by	 using	 a	 hierarchical	
feature	extraction	criterion.	Convolutional	neural	
networks	(CNNs),	which	incorporate	many	neural	
layers	 between	 input	 and	 output,	 improve	 the	
robustness	of	deep	 learning	(DL)	and	enable	 the	
training	phase	to	mimic	human	brain	operations.	
The	 amount	 of	 research	 on	 DL	 has	 almost	
skyrocketed	 in	the	 last	 few	years.	Radiomics	 is	a	
new	area	of	research	 that	has	emerged	 from	the	
ability	 to	 relate	 basic	 diagnostic	 patterns	 and	
features	 of	 radiological	 scans	 (with	 different	
modalities)	 to	 a	 specific	 pathological	 and	
histological	subtyping	by	combining	ML/DL	image	
processing	 with	 clinical	 and,	 when	 appropriate,	
pathological/histological	data	[3].	

	Radiomics	

Radiomics	 is	 a	 new	 translational	 discipline	 in	
which	 a	 range	 of	 properties,	 including	 shape,	
strength,	 and	 texture,	 are	 identified	 from	
radiological	 pictures	 to	 allow	 for	 the	collection	
of	varied	imaging	patterns.	These	patterns	may	be	
applied	to	tumors'	staging,	grading,	and	subtyping.	
In	 addition,	 radiology	 is	 commonly	 employed	 in	
systems	 in	 numerous	 forms,	 such	 as	 prediction,	
prognosis,	 monitoring,	 and	 therapy	 response	
assessment.	 Radiomics	 can	 be	 broadly	 classified	
into	two	types:	feature-based	and	deep	learning-
based.	Unlike	these	clinical	evaluations	affected	by	

the	 human	 reader,	 the	 results	 are	 more	 stable,	
accurate,	 and	 reproducible.	 Radiomics	 features	
can	 be	 calculated	 using	 multiple	 mathematical	
algorithms	(feature-based)	or	created	statistically	
from	 ML-based	 complex	 computational	 models	
during	the	training	phase	(deep	learning-based)	in	
an	automatic	process.	Figure	1	depicts	the	overall	
framework	for	radio	mics	[4].	

Neuroradiology	 applications	 of	 AI	 for	 neuro-
oncology	

In	 neuro-oncology,	 MRI	 imaging	 is	 essential	 for	
diagnosis,	 radiographic	 surveillance,	 and	
treatment	 response	 evaluation.	 However,	
interpreting	MRIs	 in	 patients	with	 brain	 tumors	
can	 occasionally	 be	 challenging.	 Treatment-
related	 changes	 can	 mimic	 the	 progression	 of	
cancer;	 histologic	 and	 molecular	 features	 that	
influence	 prognosis	 and	 treatment	 choices	
frequently	 lack	 obvious	 imaging	 correlates;	 and	
estimating	 tumor	 size	 can	 be	 difficult	 in	 tumors	
with	 diverse	 and	 infiltrative	 components	 [5].	 AI	
techniques	 like	machine	 learning,	 deep	 learning,	
and	 radiomics	 have	 been	 used	 to	 extract	
therapeutically	 useful	 information	 from	 photos	
that	 might	 not	 be	 visible	 to	 the	 human	 eye.	
Radiomics	 is	 taking	 clinical	 imaging	 into	
quantifiable,	mineable	data	or	"features"	(such	as	
shape,	 intensity,	 and	 texture).	 ML	 techniques	
frequently	use	 these	 traits	 to	 create	models	 that	
predict	different	clinical	factors.	Machine	learning	
and	 deep	 learning	 have	 been	 applied	 to	 neuro-

Table	1	Applications	of	AI	for	neuro-oncology	
Study	sample	
(total	n)	 Task	 ML	algorithm	 Performance	

Gliomas	graded	2-
4	(44	complete	
tissue	slides)	

Glioma	grade	 CNN	 96%	of	GBM	vs.	LGG	and	71%	of	
grade	2	vs.	grade	3	Accuracy	

Glioma	graded	2–
4	(323	patients)	

Glioma	
classification	

CNN	 Accuracy	87.5%	

Glioma	graded	2–
4	(549	patients)	

Glioma	grade	 DNN	 Accuracy:	74%	grade	2	vs.	grade	3;	
93.8%	HGG	vs.	LGG	

Glioma	diffuse	
(373	patients)	

Glioma	WHO	
classification	

CNN	 93.3%	accuracy	

Most	CNS	tumors	
are	classified	by	
the	WHO	(2801)	
	

CNS	Tumor	
WHO	
classification	

Supervised	ML	
(random	forest	
classifier)	and	
unsupervised	ML	
	

12.6%	did	not	match	the	
pathologist,	but	most	subsequently	
proved	correct;	60.4%	agreed	with	
the	pathologist;	15.5%	thought	the	
subclass	was	better;	Eleven	percent	
not	classified	
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oncology	 to	 measure	 tumor	 size	 and	 kind	
and	predict	 tumor	 grade,	 molecular	
characteristics,	 and	 survival.	 To	provide	 ground	
truth	 for	 the	 training	 of	 machine	 learning	
algorithms,	 radiologists	 typically	 preprocess,	
standardize,	 label,	 and	 annotate	 MRI	 data	 [6].	
These	data	may	undergo	additional	preprocessing,	
augmentation,	 or	 transformation	 before	 being	
utilized	to	train	machine	learning	or	deep	learning	
algorithms.	Frequently,	a	 "test"	cohort	of	patient	
photos	not	seen	during	training	is	used	to	evaluate	
how	well	these	trained	algorithms	function.	Other	
reviews	have	examined	the	technical	elements	of	
artificial	intelligence	in	brain	tumor	imaging.	

Brain	Tumour	Epidemiology:	

Primary	CNS	tumors	are	a	scarce	kind	of	cancer;	in	
adults,	 the	 incidence	rate	 is	estimated	to	be	23.8	
per	100,000	people.	Even	though	these	tumors	are	
uncommon,	they	account	for	a	sizeable	portion	of	
cancer-related	morbidity	 and	 death.	 Every	 year,	
roughly	 10	 out	 of	 every	 100,000	 people	 are	
diagnosed	with	a	primary	brain	tumor,	and	6	to	7	
out	of	every	100,000	people	are	diagnosed	with	a	
primary	 malignant	 brain	 tumor.	 The	 highest	
incidence	 of	 brain	 cancer	 is	 found	 in	 North	
America	 (age-standardized	 incidence	 rate	 [ASR]:	
5.3	 per	 100,000	 individuals),	 Europe	 (5.5	 per	
100,000	 persons),	 Australia,	 and	 Western	 Asia.	
Gliomas	 account	 for	 about	 30%	of	 brain	 tumors	
and	 80%	 of	 all	 initial	 malignant	 brain	 tumors.	
Astrocytomas	 and	 gliomas	 are	 the	 two	 most	
frequent	 malignant	 brain	 tumors	 in	 adults	 after	
metastasis.	 Gliomas	 range	 in	 histology	 from	
aggressive	 grade	 4	 tumors	 (glioblastoma,	 GBM)	
with	a	high	risk	of	progression	and/or	recurrence	
to	 potentially	medically	 curable	 grade	 1	 tumors	
(pilocytic	astrocytoma).	To	diagnose	and	generate	
prognoses	accurately,	tumors	must	be	accurately	
classified	and	characterized	[7].	

Subtype	and	staging	affect	cancer	death,	and	 the	
amount	of	time	survivors	survive	after	diagnosis	
differs	 significantly	 by	 grade.	 Molecular	 and	
histological	markers	are	used	to	classify	and	grade	
gliomas.	GBM	is	a	subtype	of	Glioma	that	develops	
from	healthy	glial	 cells.	 It	 comprises	a	variety	of	
tumors	with	 different	 phenotypes	 and	 genetic	
profiles	[8].	With	an	incidence	of	3.2	per	100,000	
adults	 annually,	 GBM	 is	 the	 most	 prevalent	
primary	 CNS	 tumor	in	 adults.	 With	 a	 mean	
diagnostic	age	of	64	for	primary	GBM	and	a	peak	

incidence	of	15.2	cases	per	100,000	between	the	
ages	of	75	and	84,	 the	 incidence	rises	noticeably	
with	age.	The	occurrence	of	GBM	has	been	linked	
to	 several	 genetic	 diseases,	 such	 as	 Li-Fraumeni	
syndrome,	neurofibromatosis	type	I,	and	tuberous	
sclerosis;	however,	less	than	20%	of	patients	with	
GBM	have	a	 strong	 family	history	of	 cancer,	 and	
exposure	to	 ionizing	radiation	is	the	only	known	
environmental	 risk	 factor.	Overall,	 the	prognosis	
and	 mortality	 rates	 for	 GBM	 vary	 greatly	
depending	 on	 the	 grade	 and	 subtype;	 therefore,	
techniques	to	more	precisely	predict	these	factors	
would	benefit	both	treatment	and	outcomes.	

Table	2	Main	Primary	Central	Nervous	System	
Tumors	
Malignant	 	
Astrocytomas	 20–25%	
Oligodendrogliomas	 1–2%	
Ependymal	tumors	 <2%	
Other	 8%	
Non-malignant	 	
Meningiomas	 37%	
Pituitary	 16%	
Nerve	sheath	 8%	
Other	 7%	

One	 of	 the	worst	malignant	 solid	 tumors	 is	 still	
GBM.	 For	 freshly	 diagnosed	 GBM,	 the	 1-year	
overall	survival	rate	is	17–30%,	while	the	5-year	
survival	 rate	 is	 less	 than	 5%.	 For	 GBM,	 surgical	
resection	 combined	 with	 chemotherapy	 and	
radiation	therapy	continues	to	be	the	standard	of	
care.	Chemotherapy	response	varies,	though,	and	
almost	 all	 patients	 experience	 recurrent	 illness.	
Furthermore,	 the	 frontal	 lobe	 is	 where	 these	
tumors	 most	 commonly	 originate,	 which	 causes	
cognitive	and	motor	impairments	that	cause	many	
patients	 to	 lose	 their	 independence.	 Glioma	
classification	 and	 characterization	are	
increasingly	being	done	using	molecular	markers.	
IDH1	 mutations,	 for	 example,	 can	 help	
differentiate	 between	 different	 glioma	 subtypes	
and	are	a	powerful	predictor	of	a	good	prognosis.	
More	 precise	 diagnosis	 and	 prognostication	 can	
be	 achieved	 by	 characterizing	specific	 genetic	
characteristics,	such	as	IDH1	status	[9].	

Present	 Challenges	 with	 Brain	 Tumour	
Imaging:	

Segmentation	
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Although	 neuro-oncology	 imaging	 has	 advanced	
significantly,	 there	 are	 still	 several	 obstacles	 to	
overcome	before	brain	tumors	can	be	accurately	
measured.	One	current	drawback,	for	instance,	is	
that	 unidimensional	 and	 bidimensional	 manual	
measurements	are	employed	in	many	methods	for	
tumor	 size	monitoring.	While	 this	may	work	 for	
solid	 tumors	 with	 a	 more	 spherical	 shape,	 the	

postsurgical	cavity	and	tumors	of	neuro-oncology	
patients	tend	to	be	highly	irregular	in	shape,	which	
enhances	 the	 difficulties	 in	 collecting	 accurate	
measurements.	This	 is	because	both	 the	original	
GBM	 and	 its	 recurrence	 frequently	 exhibit	
irregular	 and	 nodular	 development.	 Such	
discrepancies	 and	 possible	 errors	 could	 lead	
patients	 to	 label	 successful	 treatments	 as	

 
Figure	2	Patient	with	glioblastoma	after	resection.	Simulation	of	tilting	the	patient's	head	up	
results	in	progression	of	disease	(a)	while	in	routine	positioning	demonstrates	stable	
disease	(b),	and	tilting	downward	results	in	partial	response	(c)	
	

 
Figure	3	Shortly	after	resection,	axial	post-contrast	pictures	demonstrate	minor	disease	
enhancement	(a).	A	month	later,	a	follow-up	MRI	showed	additional	thick	enhancement	(b),	
which	later	decreased	on	images	taken	a	year	later	(c)	
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ineffective	or	vice	versa	(Figure	2).	Ultimately,	this	
difficulty	emphasizes	 the	 importance	of	accurate	
and	repeatable	methods	for	measuring	tumor	size	
[10].	

Surveillance[11]	

Apart	 from	 tumor	 segmentation,	 radiographic	
assessment	has	been	a	crucial	instrument	for	the	
ongoing	 monitoring	 of	 patients	 suffering	 from	
brain	tumors	and	has	been	essential	in	treatment	
trials.	Historically,	imaging	markers	for	treatment	
response	 and	 tumor	 progression	 have	 been	
associated	 with	 increased	 and	 decreased	 tumor	
size	 utilizing	 gadolinium	 contrast-enhanced	
sequences.	Still,	there	are	drawbacks	when	using	
contrast	 enhancement	 alone	 to	 determine	 the	
state	 of	 the	 disease.	 More	 specifically,	 after	
radiation	and	temozolomide	(TMZ)	were	added	to	
the	standard	of	care,	treatment-related	increases	
in	 enhancement	 were	 seen	 to	 resemble	
progression	 increasingly.	 Tumour	
pseudoprogression,	characterized	as	elevations	in	
edema	and	contrast	enhancement	on	MRI	with	or	
without	 clinical	 worsening	 that	 subsequently	
stabilizes	or	 recovers,	 is	 seen	 in	 20–60%	 of	
patients	 with	 TMZ	 radiation	 therapy	 (Figure	 3).	
Furthermore,	 the	 incidence	 has	 reached	 90%	 in	
patients	 with	 methylation	 status	 of	 the	
methyltransferase	 (MGMT)	 promoter	 in	 glioma	
cells	and	higher	TMZ	sensitivity.	

Since	 the	 precise	mechanism	 is	 still	 unclear,	 the	
only	accepted	method	for	differentiating	between	
treatment-related	 Parkinson's	 disease	 (PD)	 and	
proper	 progression	 of	 disease	 (PD)	 is	 invasive	
tissue	sampling,	short-interval	imaging,	or	clinical	
follow-up.	 However,	 these	 methods	 may	 cause	
delays	 and	 compromises	 when	 managing	 an	
aggressive	tumor.	To	address	some	of	these	issues,	
particularly	 PD,	 the	 Response	 Assessment	 in	
Neuro-Oncology	 (RANO)	 working	 group	
established	 criteria	 in	 2010.	 Nonetheless,	 the	
assessment	 of	 PD	 is	 still	 restricted	 when	 using	
traditional	 imaging	 methods.	 Monitoring	 GBM	
patients	 with	 PD	 also	 presents	 challenges	 with	
other	 more	 recent	 treatments,	 such	 as	
immunotherapies.	 To	prevent	 labeling	effective	
treatments	 as	 ineffective	 in	 cases	 of	 PD,	 the	
immune-related	response	criteria	working	group	
(iRANO)	 has	 developed	 guidelines	 to	 address	
the	challenges	 of	 radiographic	 worsening.	
Nevertheless,	 the	 group	 recognizes	that	 further	

research	 and	 solutions	 incorporating	 advanced	
imaging	 are	 required	 to	 improve	 assessment	 in	
these	patients	[12].	

Molecular	Classification	

Impact	of	Glioma	Inter-tumoral	Heterogeneity	
[13]	

It	 has	 been	 demonstrated	 that	 inter-tumoral	
genetic	variability	in	Glioma	affects	prognosis	and	
therapeutic	 response.	 For	 instance,	 the	 survival	
rate	of	GBMs	with	isocitrate	dehydrogenase	(IDH)	
mutations	is	noticeably	higher	than	that	of	GBMs	
with	IDH	wild	type	(31	months	as	opposed	to	15	
months).	The	World	Health	Organisation	 (WHO)	
has	 placed	 significant	 emphasis	 on	 integrating	
molecular	markers	for	its	classification	systems	in	
its	 2021	update,	 including	 IDH	 status,	 due	 to	 its	
recognition	 of	 the	 significance	 of	 genetic	
information.	 It	 is	 also	 becoming	 more	 apparent	
that	the	different	genetic	characteristics	of	GBMs	
lead	 to	 varying	 responses	 in	 terms	 of	 treatment	
responsiveness.	 O6-methylguanine-DNA	
methyltransferase	 (MGMT)	 promoter	 silencing	
was	one	of	the	first	alterations	found;	it	decreases	
the	capacity	of	tumor	cells	to	repair	DNA	damage	
caused	 by	 alkylating	 drugs	 like	 temozolomide	
(TMZ).	 It	 was	 then	 shown	 that	 45%	 of	 GBM	
patients	 had	 MGMT	 promoter	 methylation	
silencing.	These	patients	showed	an	improvement	
in	survival	when	treated	with	TMZ	with	radiation	
as	 opposed	 to	 radiotherapy	 alone	 (21.7	 months	
versus	 15.3	 months).	 To	 accurately	 advise	
personalized	therapy	 and	 offer	 prognostic	
information,	 it	 is	 imperative	 that	 future	 GBM	
monitoring	incorporates	genetic	and	imaging	data.	

Challenges	of	Personalized	Therapy	[14]	

With	 more	 than	 140	 clinical	 studies	 assessing	
personalized	or	 targeted	 medicines	 for	 GBMs	
alone,	 advancements	 in	 genetic	 profiling	 have	
sparked	 the	 development	 of	 new	 targeted	
therapeutics.	 These	 treatments	 are	 designed	 to	
take	 advantage	 of	 therapeutic	 targets	 driven	 by	
genetics.	However,	there	seems	to	be	a	barrier	to	
these	 tailored	 strategies:	 increasing	 evidence	 of	
intra-tumoral	heterogeneity	in	GBM.	Using	single-
cell	 RNA	 sequencing.	 Showed	 that	 GBMs	 are	
composed	of	a	heterogeneous	population	of	cells	
with	varying	gene	expression	profiles.	Similarly,		a	
surgical	multisampling	method	was	utilized	on	11	
GBM	patients	to	find	genome-wide	variability.	For	
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this	reason,	it	can	be	challenging	to	identify,	create,	
and	 implement	 individualized	treatment	because	
every	 brain	 tumor	 may	 represent	 a	 variety	 of	
distinct	tumor	habitats,	each	of	which	will	respond	
to	and	reject	therapy	differently.	

MRI	Biomarkers	of	Tumor	Biology	and	Genetic	
Heterogeneity	[15]	

Tumor	 biology	 is	 altered	 due	 to	 temporal	 and	
geographical	 variations	 in	 genetic	 expression.	
These	 variations	 include	 adjustments	 to	
angiogenesis,	cellular	proliferation,	apoptosis,	and	

 
Figure	4	Glioma	tumor	manual	segmentation	using	two	distinct	imaging	modalities	
	

 
Figure	5	Segmentation	of	the	enhancing	tissue	(right)	and	FLAIR	edema	(left) 
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invasion.	 These	 biological	alterations	 then	 show	
up	 as	 different	 degrees	 of	 edema	and	
augmentation	 in	 the	 varied	 imaging	
characteristics	of	brain	tumors.	For	 instance,	 the	
blood-brain	 barrier	 breaking	 down	 causes	
imaging	abnormalities	on	contrast-enhanced	MRI,	
which	 can	 show	patches	 of	 necrosis	 as	 a	 sign	 of	
apoptosis.	Furthermore,	it	has	been	demonstrated	
that	 physiology-based	 MRI	 sequences,	 including	
perfusion	 imaging	 and	 apparent	 diffusion	
coefficient	(ADC),	correlate	with	angiogenesis	and	
tumor	cellularity.	

Moreover,	 exciting	 studies	 have	 demonstrated	
that	tumors	with	a	smaller	cerebral	blood	volume	
(CBV)	 during	 perfusion	 have	 a	 longer	 overall	
lifetime	and	 are	 more	 likely	 to	 be	 IDH	mutants.	
With	 varying	 degrees	 of	 effectiveness,	 other	
papers	 have	 predicted	 IDH	 status	 using	
enhancement	 patterns	 and	ADC.	 Thus	 far,	 based	
on	these	MRI	findings,	there	has	been	inconsistent	
success	in	providing	molecular	categorization	for	
brain	 tumors.	 For	 instance,	 classifying	 IDH	 and	
MGMT	 mutant	 status	 has	 shown	 some	 success;	
however,	 techniques	 for	 1p19q	 and	 EGFR	 have	
shown	 less	 consistency.	 A	 "single"	 tumor	 may	
include	 several	 distinct	 mutations	 inside,	 and	
various	 mutations	 may	 exhibit	 comparable	 MRI	
findings.	Several	methods	have	been	developed	to	
offer	 glioma	 visual	 interpretation	 that	 is	
standardized	for	 tissue	 classification.	 As	 an	
illustration,	 the	 Visually	 Accessible	Rembrandt	
Images	 (VASARI)	 feature	 set	 is	 a	 rule-based	
lexicon	 designed	 to	 enhance	 interpretation	
repeatability.	 However,	these	 techniques	 rely	 on	
human	 visual	 interpretation,	 prone	 to	 interrater	
variability	and	intrinsic	subjectivity.	Finally,	steps	
must	 be	 taken	 to	 develop	 reliable	 and	
reproducible	 methodologies	 for	 accurately	
classifying	molecular	subtypes	a	priori.	

Potential	Applications	for	Machine	Learning:	

Segmentation	

In	oncology,	radiographic	evaluation	is	crucial	for	
clinical	follow-up	and	research	studies.	The	RANO	
criteria	currently	use	subjective	evaluation	of	the	
FLAIR	non-enhancing	tumour	and	2D	measures	of	
the	enhancing	illness	to	guide	treatment	methods.	
Unfortunately,	the	postsurgical	cavity	has	a	highly	
uneven	 form,	 which	 could	 make	 it	 more	
challenging	 to	 take	 repeatable	 and	 reliable	
measurements.	 Furthermore,	 linear	measures	 of	

cystic	 and	 necrotic	 tumors	 are	 frequently	
overstated.	It	seems	logical	that	3D	segmentation	
offers	 a	more	precise	way	 to	measure	 a	 tumor's	
size	 than	 linear	 2D	 methods	 and	 procedures.	
Comparing	 the	 3D	 segmentation	 to	 the	
conventional	 diameter-based	 approach,	 a	
superior	survival	prediction	is	possible.	

It	 has	 been	 demonstrated	 that	 deep	 learning,	 a	
relatively	new	area	 of	 artificial	 intelligence,	may	
quickly	 surpass	 the	 imaging	 benchmarks	 of	
previous	machine	learning	techniques	for	various	
computer	 vision	 applications,	 including	 3D	
segmentation	 images.	 Regarding	 brain	
segmentation,	 the	 CNN	 method	 outperformed	
other	methods	 such	 as	majority	 voting,	 coupled	
level	 sets,	 random	 forest,	 and	 support	 vector	
machine	 (SVM),	 a	 conventional	 linear	 machine	
learning	methodology.	 Deep	 learning	 techniques	
for	 tumor	 segmentation	 have	 proven	 effective	
since	2012,	as	evidenced	by	the	Multimodal	Brain	
Tumour	 Image	 Segmentation	 (BraTS)	 challenge.	
Developers	 can	 access	 GBM	 pictures	 using	 this	
dataset,	which	currently	has	over	2000	cases	from	
37	 institutions.	 Consequently,	 some	 teams	 have	
created	 automated	 brain	 tumour	 segmentation	
tools	 that	 use	 various	 AI	 methods	 to	 determine	
lesion	margins	and	offer	a	more	precise	estimation	
of	 the	 disease	 burden	 (Figure	 5).	 The	 Sørensen-
Dice	coefficient	scores	for	the	total	tumor,	tumor	
core,	 and	 augmenting	 tumor	 were	 88.95,	 85.06,	
and	82.03	respectively	[16].	

Surveillance	

As	 previously	 mentioned,	 RANO	 criteria	 cannot	
consistently	 identify	 psPD	 cases	 from	 natural	
progression,	and	a	recent	meta-analysis	indicates	
that	 up	 to	 36%	 of	 cases	 are	 underdiagnosed.	
Invasive	tissue	 sampling	 and	 short-term	 clinical	
follow-up	 with	 imaging	 are	 the	 only	
recognized	ways	 to	 differentiate	 between	
treatment-related	 psPD	 and	 real	 PD.	 However,	
these	procedures	may	complicate	and	prolong	the	
therapy	of	an	aggressive	tumor.	

Radiologic	 imaging	 has	 already	 been	 used	 to	
characterize	psPD	 using	 traditional	 machine	
learning	 algorithms.	 An	 ideal	 classifier	 for	 psPD	
was	produced	using	an	SVM	technique	and	multi-
parametric	 MRI	 data.	 Its	 sensitivity	 was	 89.9%,	
and	its	specificity	was	93.7%.	While	they	haven't	
been	 used	 as	 much,	 deep	 learning	 techniques	
show	 promise	 in	 differentiating	 between	 PSPD	
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and	 real	 PD.	 A	 CNN-LSTM	 (extended	 short-term	
memory	 network	 paired	 with	 a	 deep	 learning	
model)	was	evaluated	to	compare	tumor	PD	with	
psPD	 in	 GBM.	 With	 59	 patients	 in	 the	 training	
cohort	and	19	in	the	testing	cohort,	their	dataset	
included	clinical	and	MRI	data	from	two	different	
institutions.	 Their	 CNN-LSTM	 structure,	 which	
used	both	clinical	and	MRI	data,	produced	an	AUC	
(area	 under	 the	 curve)	 of	 0.83,	 an	 AUPRC	 (area	
under	the	precision-recall	curve)	of	0.87,	and	an	F-
1	 score	 of	 0.74,	 outperforming	 the	 two	
comparison	models	of	CNN-LSTM	with	MRI	data	
alone	and	a	random	forest	structure	with	clinical	
data	 alone.	 More	 recently,	 a	 CNN-STM	 with	 an	
accuracy	range	of	0.62–0.75	was	used	to	separate	
PD	from	PSP.	These	examples	show	that	when	it	
comes	 to	 image	 analysis,	 using	 a	 deep	 learning	
technique	 can	 perform	 better	 than	 a	 more	
conventional	machine	learning	approach	[17].	

Molecular	Classification	[18]	

Radio	 genomics	 aims	 to	 improve	 diagnosis	 by	
establishing	 connections	 between	 gene	
expression	data	and	medical	imaging	data	to	help	
understand	 underlying	 illness	 causes.	 The	
radiological	 appearance	 of	 tissue,	 including	 its	
form	and	texture,	can	be	computed	and	observed	
to	 exhibit	 specific	 molecular	 and	 genetic	
abnormalities.	Artificial	intelligence	has	emerged	
as	 a	 crucial	 component	 that	 has	 contributed	
significantly	 to	 the	 growth	 of	 radio	 genomics,	
which	 uses	 the	 interaction	 between	 genetic	 and	
radiological	 characteristics	 in	 oncology	 to	
enhance	 patient	 treatment	 decisions.	 AI-based	
radio	genomics	can	potentially	improve	diagnosis,	
prognosis,	and	survival	prediction	by	 identifying	
essential	 aspects	 in	 images	 that	 identify	 genetic	
properties	of	disease.	

 
Figure	6	Thick	enhancement	with	central	necrosis	(a)	and	infiltrative	edema	patterns	(b)	
are	among	the	characteristics.	However,	nodular	and	heterogeneous	enhancement	(c)	
characteristics	with	mass	like	FLAIR	edema	(d)	indicate	MGMT	promoter	methylation	status	
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One	of	the	first	groups	to	predict	tumoral	genetic	
subtypes	 from	 imaging	 features	 using	 neural	
networks	 in	 gliomas.	 This	 work	 used	
characteristics	 collected	 from	 space-frequency	
texture	 analysis	 on	 brain	 MRIs'	 S-transform	 to	
predict	 the	 methylation	 status	 of	 the	 MGMT	
promoter	 in	 patients	 recently	 diagnosed	 with	
GBM.	Levner's	team	successfully	identified	87.7%	
of	 the	59	patients,	31	of	whom	had	 tumors	with	
MGMT	promoter	methylation	verified	by	biopsy.	
In	addition	to	IDH	mutation	status,	residual	CNN	
approaches	 have	 been	 utilized	to	 predict	 MGMT	
promoter	 methylation	 status.	 Chang	 et	 al.,	 for	
instance,	 created	 a	 CNN	 that	 can	 accurately	 and	
simultaneously	 categorize	the	 MGMT	 promoter	
methylation	 status,	 1p19q	 codeletion,	 and	 IDH1	
gene	methylation	status	using	imaging	data	from	
259	 patients	 in	 the	 Cancer	 Imaging	 Archives	
dataset.		

A	 principal	 component	 analysis	 method	 was	
created	 to	 separate	 the	 last	 feature	 layer	 and	
identify	 the	 elements	 that	 have	 the	 greatest	
influence	on	each	categorization	(Figure	6).	These	
characteristics	 mostly	 coincide	 with	 subjective	
visual	assessments	of	what	has	been	documented	
in	 the	 literature.	Used	textural	analysis	 to	assess	
glioma	heterogeneity	and	achieved	80%	accuracy	
in	 differentiating	 between	 low-	 and	 high-grade	
gliomas.	 Furthermore,	 a	 textural	 analysis	
approach	 could	 categorize	the	 MGMT	 promoter	
methylation	 status	 in	 glioblastoma	patients	with	
71%	accuracy.	

CONCLUSION:	

In	 conclusion,	 the	 variability	 of	 the	 disease	
contributes	 to	current	challenges	 in	brain	 tumor	
imaging	 and	 poses	 issues	 for	 disease	
characterization.	However,	since	novel	AI,	ML,	and	
DL	techniques	can	reliably	and	accurately	detect	
imaging	patterns	beyond	human	perception,	their	
application	 to	 brain	 tumor	 imaging	 seeks	 to	
improve	 several	 areas.	 The	 discipline	 has	 also	
been	 stimulated	 by	 several	 public	 competitions	
(e.g.,	BraTS),	and	it	has	lately	started	working	with	
several	 imaging	associations,	 including	the	RSNA	
and	ASNR.	In	the	end,	there	is	optimism	that	these	
instruments	 will	 keep	 producing	 new	
opportunities	to	improve	research	and	treatment	
in	the	future.	
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