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The aim of the present work is to prepare anti-cancer drugs through In – 
Silico Biological Evaluation using SWISS ADME. The new Swiss ADME web 
tool, which includes in-house expert methods like the BOILED-Egg, Ilogp, 
and Bioavailability Radar, provides free access to a pool of quick yet reliable 
predictive models for physicochemical properties, pharmacokinetics, drug-
likeness, and medicinal chemistry friendliness. It is developed to predict 
various pharmacodynamics and pharmacokinetics properties of small 
molecules, helping researchers in the drug discovery and development 
process. Researchers can use this tool to assess the potential success of a 
drug in terms of its ADME. Swiss ADME offers predictive model for various 
pharmacokinetic properties such as solubility, lipophilicity, and 
bioavailability this helps researchers assess how a drug candidate will be 
absorbed, distributed, metabolized, and excreted in the body. 
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INTRODUCTION 

A powerful chemical needs to reach its target in 
the body at a high enough concentration and 
remain there in a bioactive form for the 
anticipated biologic events to occur in order to be 
successful as a medication1. Drug development 
entails evaluating excretion, metabolism, 

distribution, and absorption at progressively early 
stages of the discovery process, when there are 
many compounds under consideration but 
restricted physical sample availability. Computer 
models are legitimate substitutes for the 
experiments in that content [1]. The new Swiss 
ADME web tool, which includes in-house expert 
methods like the BOILED-Egg, Ilogp, and 
Bioavailability Radar, provides free access to a 
pool of quick yet reliable predictive models for 
physicochemical properties, pharmacokinetics, 
drug-likeness, and medicinal chemistry 
friendliness. The user-friendly interface of the 
website, which requires no login, ensures efficient 
and easy input and interpretation. Key parameters 
for a set of compounds can be quickly predicted by 
experts in cheminformatics or computational 
chemistry as well as non-experts, to aid in drug 
discovery efforts [2]. A vast number of molecular 
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structures are assessed based on a wide range of 
criteria during the laborious and resource-
intensive processes of drug discovery and 
development. This helps to direct the choice of 
which compounds to synthesise, test, as well as 
advance, ultimately aiming to identify those that 
have the best potential to treat patients. The 
compounds must have low toxicity in addition to 
great biological activity. The organism's access to 
and concentration at the therapeutic target are 
equally crucial [3]. The conventional approach to 
pharmacokinetics, or the fate of a medicinal 
molecule within the organism, involves dissecting 
the different effects into discrete characteristics 
that affect the target's accessibility. By using 
certain techniques, each of these ADME factors can 
then be assessed independently. It has been 
shown that estimating ADME early in the 
discovery phase significantly lowers the 
percentage of clinical phases that experience 
pharmacokinetics-related failure. In the early 
stages of ADME prediction, when there are many 
chemical structures under investigation but few 
compounds available, computer models have been 
promoted as a viable substitute for experimental 
methods.  

The goal of several different silicon approaches is 
to estimate ADME parameters based on chemical 
structure. Notably, Lipinski ET al.'s 
groundbreaking research looked at compounds 
that were active when taken orally to identify 
physicochemical ranges that had a high likelihood 
of becoming an oral medication; this study 
established the connection between 
pharmacokinetic as well as physicochemical 
parameters, and it is known as the "Rule-of-five" 
[4].  

Developed By: 

Swiss ADME was developed by a team of experts 
at the Swiss Institute of Bioinformatics, a 
renowned institution dedicated to advancing 
bioinformatics and computational biology, 
Molecular Modelling Group, Quartier Sorge, 
Batiment Genopode, and CH-1015 Lausanne 
Switzerland. It is developed to predict various 
pharmacodynamics and pharmacokinetics 
properties of small molecules, helping researchers 
in the drug discovery and development process. 
Researchers can use this tool to assess the 
potential success of a drug in terms of its ADME [5]. 

HISTORY: 

Swiss ADME has a rich history with its origins 
dating back to the early 2000s when the SIB 
recognized the need for a comprehensive tool to 
predict the pharmacokinetic and physicochemical 
properties of small molecules. Over the years, it 
has evolved into a sophisticated software package 
that aids researchers worldwide. It is a powerful 
software suite developed by the SIB to facilitate 
drug discovery and development processes [6]. It 
stands for Absorption, Distribution, Metabolism, 
Excretion, which are critical aspects in 
understanding how drugs behave in the human 
body. The software is known for its user- friendly 
interface and various modules that predict 
properties like solubility, bioavailability, drug-
likeness. 

Early development: Swiss ADME Software began 
its development in the late 1990 with an initial 
focus on predicting physicochemical properties, 
which are essential factors in drug design [7]. 

Expansion: Over the years, the suite expanded to 
include various modules and predictive models 
for ADME. This expansion made it a 
comprehensive platform for assessing the 
pharmacokinetic properties of potential drug 
compounds. 

Open access: Swiss ADME software has been 
made freely available to the scientific community, 
contributing to its widespread adoption [8]. 

FUNCTIONS [9-10] 

A. Pharmacokinetic Predictions: 

Swiss ADME offers predictive model for various 
pharmacokinetic properties such as solubility, 
lipophilicity, and bioavailability this helps 
researchers assess how a drug candidate will be 
absorbed, distributed, metabolized, and excreted 
in the body. 

B. Toxicity Prediction: 

The software can estimate potential toxicity, 
allowing researchers to identify and modify 
compounds with adverse effects early in the drug 
development process. 
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C. Bioavailability Optimization: 

Swiss ADME assists in optimizing drug candidates 
for improved bioavailability, increasing the 
chances of a drug reaching its intended. 

A. Lipophilicity. 

The standard descriptor for lipophilicity is the 
partition coefficient Geg P between n-octane as 
well as water. Because of the critical importance of 
this physicochemical property for 
pharmacokinetic drug development, it has its own 
section in the Swiss ADME. Various computational 
techniques were created with varying 
performance on different chemical sets for log 
Pertinmation. It is standard procedure to employ 
several predictors to get consensus estimation or 
to choose the best accurate techniques for a 
certain chemical series. To improve the prediction 
accuracy through consent slog P, the predictors' 

underlying models must be as varied as feasible 
[11]. 

B. Water Solubility: 

Many drug development operations are 
considerably aided by the presence of a soluble 
molecule, chiefly in terms of handling and 
formulation simplicity." Furthermore, solubility is 
a key factor affecting absorption in research 
efforts aimed at oral delivery. A medication 
intended for parenteral administration must also 
have a high water solubility to provide an 
adequate amount of the active component in the 
small amount of such a pharmaceutical dosage. 
Swiss ADME includes two topological techniques 
for predicting water solubility. Ali et al. provided 
an adaptation for the second me, while the first is 
an OL model. Since they do not include the melting 
point parameter—which might be difficult to 
predict—both deviate from the general solubility 
equation [12]. 

 
Figure 1 Computed parameter values are grouped in the differentselections of the one-
panel-par- molecule Output 
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C. Pharmacokinetic: 

Expert models assess each ADME behaviour of the 
substance being studied; these predictions are 
compiled in the Pharmacokinetics section.  
One panel for every molecule Results:  
On the same webpage, the output panels are 
loaded. All of the values for every molecule are 
compiled into a single panel. One molecule at a 
time, fills up instantly following the calculation. In 
this manner, it is feasible to review the initial 
compound findings without having to wait for the 
entire list to be processed. This one-panel-per-
molecule is separated into many sections and is 
headed by the name of the molecule [13]. 

D. Chemical structure and Bioavailability 
Radar: 

The two-dimensional chemical structure as well 
as canonical SMILES are included in the first 
section, which is below the title. It displays the 
chemical form that was used to calculate the 
predictions. Also shown for a quick evaluation of 
drug-likeness is our Bioavailability Radar. 
Descriptors derived from references 23 and 24 
were used to determine the six physicochemical 
ranges on each axis. The descriptors are shown as 
a pink area on the radar where additional 
information can be obtained [14]. 

 

Figure 2 The Bioavailability Radar enables a 
first glance at the drug-likeness of a molecule 

The pink region denotes the ideal range for each 
property: polarity: TPSA between 20 and 130A2, 
size: MW between 150 and 500g/mol, flexibility: 
no more than 9 rotatable bonds, solubility: logs 
not less than 0.25, and lipophilicity: XLOGP3 
between –1.7 and +5.0. A multiple linear 
regression model is one that attempts to estimate 
the skin permeability coefficient. It is adapted 

from Potts and Guy, who discovered a linear 
correlation between lipophilicity and molecule 
size and KP. A lower molecule's skin penetration is 
indicated by a greater negative logKP [15]. 

On the Swiss ADME results page, click the red 
button that appears below the sketcher once all 
input molecules have been processed. This will 
display the readout of the BOILED-Egg model, an 
inappropriate graphical classification model that 
serves as a predictor for both passive human 
gastrointestinal absorption and blood-brain 
permeation.Additional binary classification 
models are presented, centred around the 
likelihood of a specific small molecule serving as a 
substrate for proteins that control significant 
pharmacokinetic behaviours [16]. 

Understanding how chemicals interact with 
cytochromes P450 is also crucial. Through 
metabolic biotransformation, this superfamily of 
isoenzymes plays a crucial role in drug clearance. 
It has been proposed that P-gp and CYP can work 
together to metabolise small compounds in a way 
that enhances tissue and organism protection. It is 
estimated that between 50 and 90 per cent of 
therapeutic compounds are substrates of the five 
main isoforms that have been found. Swiss ADME 
makes it possible to estimate if a substance is a P-
gp substrate or an inhibitor of the most significant 
CYP isoenzymes. We used the support vector 
machine approach on massive data sets of known 
substrates that had been carefully cleansed. SVM 
was shown to outperform other machine-learning 
methods for binary classification in comparable 
situations. If the molecule under investigation has 
a higher probability of being a P-gp substrate, the 
model returns either Yes or No. When compared 
to earlier SVM models on the same targets, the 
statistical performance of the classification 
models is provided in the table. We limited the 
benchmark to cutting-edge techniques that were 
released after 2010 [17]. 

APPLICATIONS [18-19] 

Swiss ADME finds extensive applications in both 
academic research and the pharmaceutical 
industry: 

Drug Discovery: It aids in the selection and 
optimization of potential drug candidates, saving 
time and resources. 
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Lead Optimization: Researchers use Swiss ADME 
to fine-tune molecular structures to enhance a 
compounds chance of becoming a successful drug. 

Early Toxicity Screening: The software helps 
identify compounds withtoxic potential early in 
development, reducing the risk of late-stage 
failures. 

Chemo informatics: It plays a crucial role in 
various chemo informatics tasks, controlling 
library design and compound selection. 

Medicinal Chemistry: This section's goal is to 
assist medicinal chemists in their ongoing efforts 
to find new drugs. Parts that can be problematic 
can be identified using two complementary 
pattern recognition techniques. PAINS, also 
known as frequent hits or promiscuous chemicals, 
are molecules with substructures that exhibit a 
strong assay response regardless of the protein 
target. Baell et al. analysed six orthogonal assays 
and separated the molecules active on two or 
more assays into 481 recurring pieces, which are 
thought to potentially lead to promiscuous 
chemicals. These fragments, generating false 
positive biological output, were identified. If the 
molecule being examined contains such moieties, 
Swiss ADME returns warnings. 

Aiding in the selection of the most promising 
virtual molecules to be synthesised and submitted 
to biological assays or other tests is one of the 
main goals of CADD operations. One important 
thing to keep in mind during this choosing process 
is synthetic accessibility. Medicinal chemists are 
the best qualified to determine SA for a decent 
number of compounds. On the other hand, silicon 
estimates can be utilised for pre-filtering when an 
expert evaluation is hindered by an excessive 
number of molecule structures.  

A fingerprint-based method for SA estimation was 
proposed by Ertl and Schuffelhauer, although our 
tool's easy implementation is hindered by the 
presence of closed-source fingerprint-
defining information. Consequently, we have 
developed our fragmental approach through the 
analysis of over 13 million molecules that are 
promptly deliverable by vendors sets: 
several external molecules; b number of chemical 
markers; c mean average error; d root mean 
square error; e coefficient of linear correlation. 
Based on our extensive collection, we deduced 

that the majority of the molecular fragments likely 
indicate a high SA, whereas the rarer fragments 
suggest a sophisticated synthesis. For a given 
molecule, the parameters describing size and 
complexity, such as macrocycles, chiral centres, or 
Ertl-defined Spiro functions, add up and correct 
the fragmental contributions to SA. There is no 
denying that the subjective nature of human 
assessment of synthetic complexity depends on 
the training and expertise of individual chemists. 

 

Figure 1 Swiss ADME 

Graphical output [20]: 

Following the completion of all calculations, the 
graphical output is displayed on the same page by 
clicking the red "Show BOILED-Egg" button 
beneath the sketcher. The BOILED-Egg is a simple 
and easy way to predict two important ADME 
characteristics at the same time: brain access and 
passive gastrointestinal absorption. This 
categorization model was carefully constructed 
with consideration for statistical significance and 
robustness, although having a very simple 
conceptual basis—it only relies on two 
physicochemical descriptors. The grey area 
outside represents chemicals with characteristics 
suggesting anticipated low absorption and 
restricted brain penetration, and the two 
compartments are not mutually exclusive. 
Practical experience with the BOILED- Egg in drug 
development contexts has demonstrated its easy 
interpretation and effective translation to 
molecular design. Consequently, by color-coding 
(blue dots for P-gp substrates (PGP+) and red dots 
for P-gp non-substrate (PGP-), the user may 
quickly acquire an overall evaluation concerning 
passive absorption, passive brain access, and 
active efflux from the central nervous system or to 
the gastrointestinal lumen on the same graph. 
Additional capacities were included to enable 
interactive navigation and easy evaluation, in  
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Figure 4 Swiss ADME Representation 
 

 
Figure 5: The WLOGP-versus-TPSA referential molecules' functions enable the intuitive 
assessment of passive gastrointestinal absorption and brain penetration using the BOILED-
Egg. 
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contrast to the one-panel-per-molecule idea for 
other metrics. The graphical output comprises 
prediction for all molecules for all molecules 
submitted to Swiss ADME. When a point is passed 
over, a semi-transparent box containing the 
molecule's name and structure appears. 

There is a high likelihood of brain penetration in 
the yellow region and a high likelihood of passive 
absorption by the gastrointestinal system in the 
white zone. White areas and the folk are not 
mutually exclusive. Furthermore, the spots are 
coloured red if P-gp is projected to be non-
substrate and blue if P-gp is predicted to be 
actively effluxed. When performing an interactive 
analysis, the user can click on a dot to scroll to the 
relevant output panel by leaving the mouse 
pointer over the dot that displays the molecule's 
structure. In this instance, it is anticipated that 
Lapatinib will be efficiently absorbed but not 
reach the bran and PGP+, Sunitinib will passively 
cross the blood-brain barrier but be pumped out 
of the brain, and Palonosetron will enter the brain 
but not be actively effluxed. 

They enable the molecule to be submitted with 
just one click to websites for Swiss Target 
Prediction, Swiss Similarity, and Swiss Drug 
Design. These websites also feature the Swiss 
ADME pill icon, which can be used to estimate the 
pharmacokinetics of ADME, rug-likeness, and 
medicinal chemistry friendliness of a small 
molecule output from any CADD process. 

Advantages [21]: 

Comprehensive: Swiss ADME provides a wide 
range of predictive models, offering a holistic view 
of a compound ADME properties. 

Time and Cost Savings: It accelerates the drug 
development process by guiding researchers 
toward compounds with higher chances of success.  

User-Friendly Interface: The software is designed 
to be user-friendly, making new comers in the field. 

Predictive Capabilities: Swiss ADME can predict 
various pharmacokinetics and physicochemical 
properties of compounds, helping researchers 
assess a drug’s viability. 

Integration: The tool can be integrated into larger 
drug discovery workflows, enhancing its utility in 
the pharmaceutical research. 

Batch Processing: Users can submit multiple 
compounds for analysis in a single run, saving 
time and effort. 

Visualization: The software provides 2Dand 3D 
molecular structure visualization, helping users 
better understanding the properties of their 
compounds. It is important to note that while 
Swiss ADME is a powerful tool, it should be used 
in conjunction with other experimental and 
computational methods to comprehensively 
assess drug candidates. 

Cost-efficacy: By identifying potential issues with 
compounds before conducting costly 
experimental studies, Swiss ADME can lead to 
significant cost savings in the drug development.  

Board applicability: It is valuable not only in 
pharmaceutical research but also in areas like 
agrochemicals, food chemistry and environmental 
science. 

It is important to note that while Swiss ADME is a 
powerful tool, it should be used in conjunction 
with other experimental and computational 
methods to comprehensively assess drug 
candidates. 

Disadvantages [22]: 

Data quality: The accuracy of predictions heavily 
relies on the quality ofinput data and errors in the 
compound information can lead to unreliable 
results. 

Limited to small molecules: Its primarily designed 
for small organic molecules and may not be 
suitable for large biologics or peptides. 

Limited accuracy: Swiss ADME predictions may 
not always be highly accurate, especially for 
compounds with unusual or properties. 

Limited Predictive Power: Predictive accuracy 
may vary for different properties, and the 
software might not perform equally well for all 
compounds or endpoints. 

Lack of customization: Users have limited control 
over the underlyingalgorithms models, making it 
less flexible for specific research needs. 

Single compound Focus: It’s more suitable for 
assessing individual compounds rather than 
complex mixtures or interactions between 
multiplecompounds. 
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Commercial Licensing: While there is a free 
version, some advanced features of Swiss ADME 
may require a commercial license, which can 
becostly. 

Lack of Mechanistic Insights: Swiss ADME 
provides predictions but does not offer detailed 
mechanist insights into the predicted properties, 
which may be crucial in some drug development 
scenarios. Despite these disadvantages, Swiss 
ADME remains a valuable tool for early – stage 
drug discovery and optimization, especially for 
small molecules with well characterized 
properties. 

ADME predictor is a machine learning software 
tool that quickly and accuratelypredicts over 

175 properties, including solubility, pka, logP sites 
of CYP metabolism and Ame’s mutagenicity. 

1. PRINCIPLE [23] 

Swiss ADME software principles refer to the 
principles and methodologies used in software 
tools designed to predict the pharmacokinetic 
properties of small molecules in the drug 
discovery and development.64These principles 
typically encompass the following: 

a. Data Integration: Swiss ADME software 
integrates various data sources, including 
chemical structures, physicochemical 

properties, and biological data, to provide 
comprehensive predictions. 

b. Pharmacokinetic Modeling: These tools 
employ mathematical models and algorithms 
to simulate how a drug compound will be 
absorbed, distributed, metabolized, and 
excreted in the body. 

c. Structure-Activity Relationships (SAR): 
Swiss ADME software often uses SAR analysis 
to link chemical structures to pharmacokinetic 
properties, helping to predict how structural 
changes impact drug behavior in the body. 

d. Predictive Algorithms: These tools utilize 
predictive algorithms based on historicaldata 
to estimate properties such as solubility, 
permeability, and half-life. 

e. Data Validation: Validated and curated 
datasets are crucial for accurate predictions, 
ensuring that the software's results are 
reliable. User-Friendly Interfaces: User-
friendly interfaces and visualization tools 
make it easier for researchers to input data, 
interpret results, and make informed decisions. 

f. Machine Learning and AI: Some Swiss ADME 
software incorporates machine learning and 
artificial intelligence techniques to improve 

 
Figure 6: ADMER Predictor 
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prediction accuracy and handle complex data 
relationships. 

g. User-Friendly Interfaces: User-friendly 
interfaces and visualization tools make it 
easier for researchers to input data, interpret 
results, and make informed decisions. 

h. Customization: Flexibility to customize 
models and parameters to suit specific 
research needs or drug development goals is 
often a key feature. 

i. Compliance: Swiss ADME software may 
adhere to regulatory guidelines and standards 
to ensure that the predictions align with 
industry requirements for drug development. 

j. Data Privacy: Ensuring the confidentiality and 
security of proprietary drug data iscritical in 
these tools. 

These principles are applied to help researchers 
assess the potential of drug candidatesby 
predicting how they will behave within the human 
body, ultimately aiding in the selection and 
optimization of compounds with desirable 
pharmacokinetic properties. 

2. WORKING [24] 

a. Input: Users input the chemical structure of a 
compound in the form of a 2D or 3D molecular 
structure file. 

b. Prediction: Swiss ADME uses a variety of 
computational models and algorithms to 
predict key ADME properties such as 
lipophilicity, water solubility, permeability, and 
more. It also estimates the potential for 
metabolism by cytochrome P450 enzymes. 

c. Results: The software provides a report with 
the predicted ADME parameters and related 
information for the input compound. 

d. Interpretation: Users can interpret the results 
to assess the compound's suitability for drug 
development. For face challenges in 
metabolism or excretion.  

e. Decision Support: Swiss ADME assists 
researchers in making decisions about whether 
to proceed with the development of a particular 
compound, considering its pharmacokinetic 
properties. 

Export: Users can export the results for further 
analysis and reporting. Swiss ADME is a valuable 
tool in the drug discovery process as it helps 
pharmacokinetics researchers and 
pharmaceutical companies quickly assess the 
drug likeness and potential issues. 

Activity: 

Anticancer drugs are made to treat a variety of 
cancer types. The unchecked growth of cells that 
obstruct the development of healthy cells is 
known as cancer. Radiation, chemotherapy 
(treatment with anticancer medications), surgery, 
or a combination of these are the main cancer 
treatments.  
Anti-cancer medications are intended to prevent 
and treat a variety of cancers, including testicular 
seminomas, Hodgkin's and non-Hodgkin's 
lymphomas, cervical cancer, breast cancer, small 
cell lung cancer, head and neck cancer, ovarian 
cancer, osteosarcoma, and lymphoblastic 
leukaemia.  

Anti-Cancer Drugs' Common Mechanism of 
Action: 

a. They could work by causing harm to 
malignant cells' DNA. Anticancer drugs can 
result in the production of nonsense DNA or 
RNA or cause single-strand and double-strand 
breaks in DNA. This group of medications 
includes, among others, etoposide, 
daunorubicin, doxorubicin, mitomycin C, and 
cisplatin.  

b. They prevent the synthesis of new DNA 
to prevent cell replication, which promotes 
tumour growth. There are several methods in 
which these agents function. 

c. They halt mitosis, which is the process by 
which the original cell divides into two new 
cells. Reversing mitosis prevents cancer cells 
from proliferating, or dividing, and may 
eventually stop the cancer from spreading 
[25]. 

There are various categories into which anti-
cancer agents can be classified [26]: 

DNA ALKYLATING AGENTS: 

• Clorambucil 
• Cyclophosphamide 
• Ifosfamide 
• Mechlorethamine 
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Table 1: Alkylating agents 

S.No 
Name of the 
Drug & Structure 

IUPAC Name Smiles Notation 

1. Mechlorethamine 

Cl
N

Cl

CH3

 

N-(2-chloroethyl)-N- methylpropan-
1-amine 

CCCN(C)CCCl 

2. Melphalan 

OH

O

NH2
N

Cl

Cl  

(1H) - [(2S)-2-amino-3-{4-[bis(2- 
chloroethyl) amino] phenyl}-1- 
hydroxypropylidene] dioxidanium  

O\[O+]=C(/O)[C@@H](N)Cc1ccc 
(cc1)N(CCCl)CC 
Cl 

3. Carmustine 

NH N
ClCl

O

N
O  

1,3-bis(2-chloroethyl)-1- nitrosourea O=C(NCCCl)N(CCCl)N=O 

4. Lomustine 

NH N
Cl

O

N
O  

1-(2-chloroethyl)-3- cyclohexyl-1-
nitrosourea 

O=C(NC1CCCCC1) N(CCCl)N=O 

5. Dacarbazine 

N

N
H

NH2

N

N
N

O

 

5-[(1E)-3,3-dimethyltriaz-1- en-1-yl]-
1H-imidazole-4- carboxamide 

O=C(N)c1ncnc1/N=N/N(C)C 

6. Cyclophosphamide 

NH
P

O

NO

Cl

Cl

 

N, N-bis(2-chloroethyl)-1,3,2- 
oxazaphosphinan-2-amine 2- oxide 

O=P1(NCCCO1) N(CCCl)CCCl 

7. Temozolomide 

N

N

N

N
N

O

O
N

H

H

 

4-methyl -5-oxo-2,3,4,6,8- 
pentazabicyclo [4.3.0]nona- 2,7,9-
triene-9-carboxamide 

NC(=O) c2ncn1c2N=[N+] =NC1=O 

8. Chlorambucil 
O

OH
N

Cl

Cl

 

Butane-1,4-diyl dimethanesulfana-te O=[SH2+] (=O) OCCCCO[SH2+] (=O) 
=O 

9. Busulfan 

O
SO

S

O
O

O
O

 

Butane-1,4-diyl dimethanesulfana-te O=[SH2+] (=O) OCCCCO[SH2+] (=O) 
=O 

10 Ifosfamide 

O
P

N

N O

Cl

Cl
H

 

N,3-bis(2-chloroethyl)-1,3,2- 
oxazaphosphinan-2-amine 2- oxide 

O=P1(NCCCl)OCCCN1CCCl 
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Table 2: Heavy Atoms 
Codes No. heavy atoms No.arom Heavy atoms Fraction Csp3 
Mechlorethamine 8 0 1.00 
Melphalan 20 6 0.46 
Carmustine 12 0 0.80 
Lomustine 9 0 0.86 
Dacarbazine 13 5 0.33 
Cyclophos phamide 7 0 1.00 
Temozolomide 3 0 0.00 
Chlorambucil 12 6 0.30 
Busulfan 2 0 0.30 
Ifosfamide 14 0 1.00 

 
No. rotatable bonds No. H-bonds acceptors Molar Refractivity TPSA 
4 1 38.65 3.24 A2 

8 4 81.54 86.79 A2 

7 3 46.77 61.77 A2 

2 1 37.04 29.10 A2 

3 4 44.77 99.73 A2 

0 3 31.22 61.80 A2 

0 1 10.22 43.09 A2 

4 2 47.60 37.30 A2 

0 1 10.84 36.28 A2 

5 4 62.60 51.38 A2 

Lipophilicity characteristics 
Table 3: Lipophilicity Characteristics [28] 

Code iLOGP XLOGP3 WLOGP 
Mechlorethamine 2.41 1.75 1.57 
Melphalan -3.07 2.17 1.93 
Carmustine 1.72 1.53 1.16 
Lomustine 1.61 1.36 1.07 
Dacarbazine 0.24 -0.56 0.07 
Cyclophosphamide 0.52 -0.69 0.01 
Temozolomide 0.24 -0.85 -0.90 
Chlorambucil 1.69 2.42 2.09 
Busulfan 1.69 2.42 2.09 
Ifosfamide 2.08 0.86 1.50 

 
MLOGP SILICOS-IT Consensus Log Po/w 

1.89 1.28 1.78 
-0.05 0.62 0.32 
0.99 0.66 1.21 
1.23 1.32 1.32 
-0.66 -0.09 -0.20 
-0.83 2.30 0.26 
-1.13 -0.47 -0.62 
2.29 2.23 2.14 
2.29 2.23 2.14 
0.97 1.13 1.31 
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Water Solubility 
Table 4: Water Solubility [29] 

Code 
ESOL 

Log S (ESOL) 
Solubility 

Class 
mg/ml mol/L 

Mechlorethamine -1.52 4.10e+00 3.02w-02 VS 
Melphalan -2.90 4.07e-01 1.26e-03 S 
Carmustine -1.67 4.59e+00 2.14e-02 VS 
Lomustine -1.35 5.64e+00 4.43e-02 VS 
Dacarbazine -0.70 3.61e+01 1.98e-01 VS 
Cyclophosphamide -0.16 8.45e+01 6.98e-01 VS 
Temozolomide 0.42 1.17e+02 2.61e+00 HS 
Chlorambucil -2.49 5.33e-01 3.25e-03 S 
Busulfan -2.49 5.33e-01 3.25e-03 S 
Ifosfamide -1.67 5.58e+00 2.14e-02 VS 

 

Code 
Ali 

Log S (Ali) 
Solubility 

Class 
mg/ml mol/L 

Mechlorethamine -1.44 4.98e+ 3.67e-02 VS 
Melphalan -3.63 7.63e-02 2.37e-04 S 
Carmustine -2.44 7.84e-01 3.66e-03 S 
Lomustine -1.57 3.40e+00 2.67e-02 VS 
Dacarbazine -1.06 1.57e+01 8.62e-02 VS 
Cyclophosphamide -0.13 8.91e+01 7.36e-01 VS 
Temozolomide 0.43 1.20e+02 2.67e+00 HS 
Chlorambucil -2.85 2.34e-01 1.43e-03 S 
Busulfan -2.85 2.34e-01 1.43e-03 S 
Ifosfamide -1.52 7.84e+00 3.00e-02 VS 

 

Code 
SILICOS-IT 

Log S (SILICOS-IT) 
Solubility 

Class 
mg/ml mol/L 

Mechlorethamine -2.19 8.68e-01 6.40e-03 S 
Melphalan -3.61 7.96e-02 2.47e-04 S 
Carmustine -2.03 2.01e+004 9.40e-03 S 
Lomustine -1.28 6.74e+00 5.30e-02 S 
Dacarbazine -1.03 1.69e+01 9.29e-02 S 
Cyclophosphamide -0.47 4.08e+01 3.37e-01 S 
Temozolomide 0.76 2.60e+02 5.77e+00 S 
Chlorambucil -2.98 1.74e-01 1.06e-03 S 
Busulfan -2.98 1.74e-01 1.06e-03 S 
Ifosfamide -2.71 5.08e-01 1.95e-03 S 
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Pharmacokinetics 
Table 5: Pharmacokinetics 

Code GI absorption BBB permeant P-gp substrate CYP1A 2 inhibitor 
Mechlorethamine Low No No No 
Melphalan High No Yes No 
Carmustine High Yes No No 
Lomustine High Yes No No 
Dacarbazine High No No No 
Cyclophosphamide High No No No 
Temozolomide High No No No 
Chlorambucil High Yes No No 
Busulfan High Yes No No 
Ifosfamide High Yes No No 

 
CYP2C 19 
inhibitor 

CYP2C 9 
inhibitor 

CYP2D 6 
inhibitor 

CYP3A 4 
inhibitor 

Log Kp (Skin permeation) 
(cm/s) 

No No No No -5.88 
No No No No -6.72 
No No No No -6.52 
No No No No -6.11 
No No No No -7.81 
No No No No -7.53 
No No No No -7.18 
No No No No -5.58 
No No No No -5.58 
No No No No -7.28 

Drug likeness 
Table 6: Drug Likeness 

Code Lipinski Ghose Veber 
Mechlorethamine Yes; 0 violation No;2 violations Yes 
Melphalan Yes; 0 violation Yes Yes 
Carmustine Yes; 0 violation Yes Yes 
Lomustine Yes; 0 violation No;2 violations Yes 
Dacarbazine Yes; 0 violation Yes Yes 
Cyclophosphamide Yes; 0 violation No;3 violations Yes 
Temozolomide Yes; 0 violation No;4 violations Yes 
Chlorambucil Yes; 0 violation Yes Yes 
Busulfan Yes; 0 violation Yes Yes 
Ifosfamide Yes; 0 violation Yes Yes 

 
Egan Muegge Bioavailability score Egan 
Yes No;2 violation 0.55 Yes 
Yes Yes 0.55 Yes 
Yes Yes 0.55 Yes 
Yes No;2 violation 0.55 Yes 
Yes No; 1 violation 0.55 Yes 
Yes No;2 violation 0.55 Yes 
Yes No;2 violation 0.55 Yes 
Yes No;1 violation 0.85 Yes 
Yes No; 1 violation 0.85 Yes 
Yes Yes 0.55 Yes 
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• Melphalan 
• Cisplatin 
• Oxaliplatin 
• Satraplatin 
• Carmustine 
• Lomustine 
• Dacarbazine 

ANTIMETABOTILES: 

• Cladribine 
• Clofarabine 
• Cytarabine 
• Gemcitabine 
• Pyrimidine antagonists 
• Capecitabine 

• Floxuridine 
• Methotrexate  

ANTIBIOTICS: 

• Bleomycin 
• Dactinomycin 
• Daunorbicin 
• Doxorubicin 
• Mitomycin 
• Valrubicin  

MITOSIS INHIBITORS: 

• Docetaxel 
• Etoposide 
• Paclitaxel 

Medicinal Chemistry: 
Table 7: Medicinal Chemistry [30] 

Code PAINS Brenk Leadlikeness Synthestic accessibility 
Mechlorethamine 0 alert 1 alert No; 1 violation 1.50 
Melphalan 1 alert 3 alerts No; 1 violation 2.67 
Carmustine 0 alert 2 alerts No; 1 violation 2.42 
Lomustine 0 alert 1 alert No; 1 violation 1.00 
Dacarbazine 1 alert 1 alert No; 1 violation 2.65 
Cyclophosphamide 0 alert 1 alert No; 1 violation 3.79 
Temozolomide 0 alert 1 alert No; 1 violation 1.00 
Chlorambucil 0 alert 0 alert No; 1 violation 1.00 
Busulfan 0 alert 0 alert No; 1 violation 1.00 
Ifosfamide 0 alert 2 alerts Yes 4.07 

 

 
Figure 7: Alkalyting Agents Structural Formulas 
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• Teniposide 
• Topotecan 
• Vincristine 
• Vinorelbine 

ORGANOPLATINUM COMPLEXES: 

• Carboplatin 

ALKYLATING AGENTS: 

The main atoms with which these alkylating 
chemicals react cytotoxically in biological systems 
are those found in proteins and DNA. These 
compounds react with electron-rich atoms to 
generate strong chemical bonds.  
When it comes to biological toxicity, reactions 
involving DNA constituents are the most 
significant, with RNA and proteins having a 
secondary role. 

It has been reported that mitomycin C, which has 
been effectively used to treat a variety of cancers, 
including gastric, pancreatic, breast, non-small cell 
lung, cervical, prostate, and bladder cancers, has a 
quinine chemical structure, which produces OH 
through a series of bio-reductive processes. High-
reactivity radicals were thought to have the ability 
to directly harm cells' DNA and other 
macromolecules. 

3. MECHANISM [27]: 

Alkylating agents are substances that react with 
biologic molecules' electron-rich atoms to create 
covalent bonds. These agents are often classified 
into two groups: those that interact with biologic 
molecules directly and those that combine to 
generate a reactive intermediate that 
subsequently interacts with the biologic molecule. 
Next, stop cells from splitting DNA in two different 
ways: Bifunctional alkylation: an irreversible 
bond is formed between two base pairs in the DNA 
chain by the drug's insertion. This process 
disrupts the cells’ ability to replicate and repair its 
DNA, ultimately leading to cell death. These are 
used to treat various types of cancer by preventing 
the controlled growth and division of cancer cells. 
Some commonly used alkylating agents include 
cyclophosphamide and temozolomide. 
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